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Abstract. We propose a model for reorientational motions of molecules associated with secondary
beta-relaxation in supercooled liquids. The secondary relaxation is attributed to relaxation within a
given local minimum, while the primary relaxation is attributed to transitions between distinct free-
energy minima. We find that (i) at the temperature where the peak frequency of the extrapolated
beta-relaxation intersects the alpha-relaxation, the actual and the extrapolated spectra differ in their
time constants by approximately one decade; (ii) there is no clear division between the imaginary
part of the dielectric susceptibility for the alpha- and the beta-relaxation for temperatures larger than
1.1 Tg . Thus, one must proceed with caution to extrapolate low temperature data of beta-relaxation
to higher temperatures in order to estimate the temperature at which the time scales for the two
processes cross. The relaxation times for the alpha- and the beta-processes cannot cross except at
high temperature, where only the primary relaxation remains.

1. Introduction

Since a detailed understanding of the origin of the slow beta-process is lacking, there has
been renewed experimental and theoretical interest in elucidating the characteristics of the
beta-process in glass-forming liquids [1–15]. The β-relaxation is generally viewed to be
an inherent property of the glassy state of matter [3, 4] and has been attributed not only to
intramolecular reorientation [5, 6], but also to the packing statistics of the molecules in the
inherent structure description of supercooled liquids [1, 2, 10].

Near the glass transition temperature, the time scale of theβ-relaxation process in dielectric
loss experiments is in the kHz range, while that of the alpha-relaxation is a few hundred
seconds. A partition of the β- and the α-peaks is usually observed at low temperatures. At
high temperatures, however, the β- and the α-peaks tend to merge if the analysis is based
on low temperature extrapolated data of the β-peak frequency. Various scenarios have been
advanced to explain the crossing of the β- and the α-time-scales [6, 11–13].

In this paper, we review a recently proposed generalization of the free-energy landscape
model to the β process [14, 15]. In section 2, we describe the essential features of the free-
energy landscape model for activated β-processes. In section 3, we briefly present a model
calculation for dielectric loss and discuss its implications.

2. Model for β-relaxation

Reorientation dynamics inside an individual minimum of the free energy defines the β-process.
Structural relaxation occurs by transitions amongst the various free-energy minima. Note that
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the various minima are not due to all coarse grained degrees of freedom. In this model, not
all degrees of freedom are to be coarse grained but mainly the centre of mass positions of
the molecules. The reorientational processes are very restricted in the sense that they are
not isotropic. The underlying idea is that steric hindrance within an amorphous minimum is
responsible for such barriers.

Let be κ(ε′|ε) the rate of transition between an initial minimum (state) ε and a final
minimum, ε′, ε → ε′, which obeys a detailed balance. In the model, the orientation as well
as the translation degrees of freedom of a labelled molecule are linked to the α-relaxation
process through (ε|ε). The dynamics of the system at a given temperature is governed by a
master-like equation for the Green function G(ε, t |ε0) and can be expressed in terms of the
attempt frequency, κα

∞, the mean activation energy Eα , the density of states of the minimum
ε′, η(ε′), and the activation energy for escape out of a given valley Eα − ε [14, 15].

At time t , the orientation of a tagged molecule changes as a result of relaxation; this
orientation is denoted by �α(t). Similarly, ωβ(t) denotes the orientation of the molecule at
time t due to relaxation. Our goal is to describe the rate equation for the combined Markov
set (�α,ωβ, λ), where λ = (ε, µ), and µ is the activation energy of the β-process.

A molecular fixed coordinate system (M) is introduced as shown in figure 1. The z-axis
of system M , zM , is in coincidence with the axis of interaction being studied [15]. By axis
of interaction one means, in the case of a dielectric, the axis of the dipole moment, while
in deuteron NMR, it is the principal axis system of the electric field gradient tensor. The
β-process is described as angular jumps, on a cone of fixed polar angle θ , with azimuthal jump
angle δ(t) about some axis A, relative to M , chosen such that its z-axis is parallel to A [15].
The angle δ(t) is time dependent and can acquire only two values. We assume equilibrium
populations of the two orientations, ω1 = (αAM(ε), θ(ε), δ(ε)) and ω2 = (αAM(ε), θ(ε), 0),
peq(ωi) = 1/2, i = 1, 2 [15]. The assumption that peq(ωi) = 1/2 means that the two
orientations are equally probable. This and the choice of only two orientations is the simplest
one. Other scenarios give rise to quantitatively more complex behaviour, but the qualitative
features remain unchanged. We do not specify the angles αAM(ε) as they turn out not to be
relevant for evaluation of two-time correlation functions.

Figure 1. The molecular fixed coordinate system (M). The α-relaxations are due to isotropic
reorientations of the molecular axis. The β-process is described by angular jumps, on a cone of
fixed polar angle θ , with azimuthal jump angle δ(t) around some axis A, relative to M , chosen such
that its z-axis is parallel to A. Adapted from [15] (1999 copyright, American Physical Society).

In this model, the α-relaxations are due to isotropic reorientations of the molecular axis
(M) relative to the laboratory coordinate axis (L): �α(t) = (αML(t), βML(t), γML(t)), where
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� = (α, β, γ ) are the Euler angles [15].
We make the assumption that the transition rates between distinct minima do not depend

on the activation free energy µ [15]. The dependence of ε on µ is, however, complicated.
We have analysed the case in which ε and µ are not correlated and hence have independent
distribution peq(ε) and g(µ) respectively [15]. Another possibility that has been investigated
is a strong correlation between the alpha- and the beta-processes defined by µ = f (ε) [15].

The conditional probability of the Markov process (�α(t), ωβ(t), λ(t)) satisfies an
appropriate master equation with the transition probability expressed in terms of a parameter
c. If c is unity, no correlation exists between the processes ε(t) and ωβ(t). If c is zero, then
the transition ε → ε′ randomizes ωβ [15].

To solve the master equation, the conditional probability is expanded in terms of Green
functions G and the Wigner rotational matrices D(1)

mn(�); the latter quantities are eigenvectors
of the transition matrix [15, 16]. Two-time orientational correlation functions C(1)

n1n2
(t) =

〈D(1)
n1n2

(�AL(t))D
(1)∗
n1n2

(�AL(0))〉 are calculated from the conditional probability, where AL

denotes the relative orientation between the A-axis system and the laboratory fixed frame [15].
From C(1)

n1n2
(t), all experimental observable quantities are obtained.

3. Results and discussion

3.1. Model parameters

For computational convenience we have taken the density of states to be a %-distribution [15]

η(ε) = T(δε)p e−q(δε) (1)

where T is a normalization constant, and δε denotes the deviation of ε from its maximum
value, εmax . We used a gamma-distribution mainly because it is flexible enough to give either
a Gaussian or an exponential distribution for some choice of the parameters. In the results
presented below, we have taken p = 10 and q = 0.3 [15].

As mentioned above, the β-relaxation is modelled as activated jumps between two
orientations. Since we assume the activation free energy µ and ε are not correlated, the
values for µ are selected from the distribution g(µ), assumed to be a Gaussian, whose mean
and variance are Eβ and σ , respectively [15]. We use a symmetric distribution of activation
energies which automatically gives rise to an approximately symmetric dielectric loss and the
spread is just a question of the width. As will be seen below, the important point in our model
is that the peak becomes asymmetric when the time scales of alpha- and beta-relaxation are
no longer separated in a clear-cut way. The temperature dependence of the reorientation rate
is Arrhenius: %(µ) = κ

β
∞e−βµ, where β = 1/kBT , kB is the Boltzmann constant and T is the

absolute temperature [15]. The parameters κβ
∞ and Eβ have been assigned the values 1015 s−1

and 24 Tg respectively [7, 15].
For the α-process, the parameters in the model are the activation free energy Eα and the

quantities p and q that appear in the density of states. The value of Eα is fixed by imposing the
constraint that the correlation time at temperature T ≈ 1.2 Tg is 10−8 s [15]. Since the overall
time scale is dictated by the attempt frequency, we choose the combination κα

∞e−βgEα to define
the glass transition temperature Tg . The value for this temperature is such that the orientation
time correlation function for the first rank Legendre polynomial decays in approximately 100 s
[15]. We have varied the activation free energy Eα from 108 to 114 Tg and the corresponding
variance σ from 4.5 to 7 Tg . Thus, the parameter X(Tg) = κα

∞e−βgEα/κ
β
∞e−βgEβ acquires

values between 105 at T = 108 Tg and 22.8 at T = 22.8 Tg [15].
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Figure 2. Log(ωp) versus inverse temperature scaled by the glass transition temperature. The

continuous and the dashed lines are the peak frequency of ,(β)

1 (ω) for the case c = 0 and c = 1
respectively. The dotted line represents the extrapolated low temperature characteristic of the peak
frequency for the beta-relaxation. The dashed–dot line is the peak frequency for the alpha relaxation
,

(α)
1 (ω). Adapted from [15] (1999 copyright, American Physical Society).

Next we turn our attention to the determination of the jump angles (φ, ψ, δ). Since the
alpha-relaxation is viewed as isotropic reorientation of the molecule, φ = ψ/

√
8 [17]. NMR

studies on tolune, glycerol and ortho-terphenyl indicate an approximate value of 10◦ for ψ

[18–20].
The jump angle δ is determined as follows. The mean-squared displacement and the jump

distance rjump in the two-site model are related by 〈r2〉 = peq;1peq;2{2rjump sin(δ/2)}2 [15].
Near, Tg the mean squared displacement increases in an exponential manner with temperature.
Thus, its temperature dependence is through the equilibrium distribution and the azimuthal
angle. We take the temperature dependence of δ(T ) to be Arrhenius: δ(T ) = δ0 e−βEδ [8].
We have varied δ0 between 10 and 3◦ at 0.8 Tg [15].

3.2. Dielectric susceptibility

In the model, the imaginary part of the dielectric susceptibility is found to be of the form [15]

,(ω) = f (10)
α ,

(α)
1 (ω) +

(
1 − f (10)

α

)
,

(β)

1 (ω) (2)

where the amplitudes f (ln)
α are strongly dependent on the angle θ—the angle between the zM -

axis and the interaction under consideration (see figure 1). For dielectric relaxation, the values

of l and n are 1 and 0, respectively. Here, ,(x)
1 (ω) is the Laplace transform of −

[
d,(x)

1 (t)/dt
]

and the functions ,
(β)

1 (t) and ,
(α)
1 (t) are explicitly given in [15].

We have varied the angle θ between 20 and 60◦ in intervals of 10◦. Numerical results show
that the amplitude f 10

α (θ ≈ 60◦) is approximately that determined by experiments [6, 7, 15].
The various Green functions are numerically solved by diagonalizing the discrete form of the
various matrices and applying 50–100 values of ε. Both ,

(α)′′
1 (ω) and ,

(β)′′
1 (ω) as a function
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of frequency (ω) were evaluated for a range of temperatures from 0.8 to 1.2 Tg in intervals of
0.04 Tg [15]. The peak position of ,(α)′′

1 (ω) and ,
(β)′′
1 (ω), ωp, as well as the full width at half

maximum were then calculated as a function of temperature.
The logarithms of ωp—the peak positions for both the alpha- and the beta-processes—are

plotted as a function of reduced temperature T/Tg in figure 2. In this figure, we have also
depicted the extrapolated behaviour of the low temperature characteristic of the response
function ,

(β)′′
1 (ω), i.e. ,

(β,0)′′
1 (ω)—a quantity which does not depend on the correlation

parameter c [15].
Several comments are in order. First, the peak frequency of the extrapolated beta-

relaxation intersects the alpha-relaxation at ln(ωp) ≈ 6.5 [15]. At the cross-over temperature,
the actual and the extrapolated spectra differ in the time constant by a decade or so [15].
Second, the actual spectra of ,

(β)′′
1 (ω) deviate from the extrapolated spectra at temperature

above T ≈ 1.1 Tg , where the two peak frequencies vary by two decades. Third, there is no
clear division between the imaginary parts of the dielectric susceptibility spectra for the alpha-
and the beta-relaxation for temperatures larger than 1.1 Tg [15]. Fourth, the width of ,(β)′′

1 (ω)

deviates even at low temperatures from the width of the low temperature extrapolated spectra,
,

(β,0)′′
10 (ω) [15]. Fifth, what the results mean is that care must be taken to extrapolate low

temperature data of beta-relaxation to higher temperatures in order to estimate the temperature
at which the time scales for the two processes cross [15]. The relaxation times for the alpha- and
the beta-processes cannot cross except at high temperature, where only the primary relaxation
remains [15]. Finally, note that the temperature dependence of the peak position of the alpha-
process, contrary to experiments, shows Arrhenius-like behaviour [15]. This is due to our
assumption that the density of states η(ε) is temperature independent [15]. However, the
curvature can be made steeper by assuming the variance σ of η(ε) to be temperature dependent.
Since the goal of this work is the description of the beta-process, we have not explored the
consequences of a temperature dependent width to the density of states.
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